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▶ Yang, Mills (1953):
U(1) gauge symmetry in Maxwell → general symmetries

▶ To allow general gauge symmetries,
Vector fields in Maxwell theory → Lie algebra valued 1-forms;
Linear equations in Maxwell theory → nonlinear ones.

▶ YM is now the unified framework for elementary particles.
EM, weak, strong forces = U(1) × SU(2) × SU(3) YM in 4D.
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▶ Recall: classical model defined by an action functional S(X ),
the quantum theory is formulated as functional integrals:

ˆ
(· · · )e−S(X)dX

▶ To define the YM model,
let’s fix a compact Lie group G (e.g. G = U(N)),
and g is its Lie algebra (e.g. g = {N × N skew-Hermitians}).
Recall the exponential map Exp : g → G .
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Lattice Yang–Mills model:

x

y
Qxy ∈ G

z

w

p S(Q) =
∑

p
Tr(Qxy QyzQzw Qwx )

Measure (well-defined!) e−S(Q)dQHaar

∀g : lattice → G, S(Q) is invariant under Qxy 7→ gxQxy g−1
y .

Yang–Mills in continuum: A = (A1, · · · , Ad), with Ai : Rd → g.

S(A) =
ˆ

∥FA∥2dx F ij
A = ∂iAj − ∂jAi + [Ai , Aj ]

“Measure” (completely formal!): e−S(A)DA

∀g : Rd → G, S(A) is invariant under A 7→ gAg−1 − (dg)g−1.
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Remarks:
▶ If d = 4, G = U(1), Euler-Lagrange equ → Maxwell equ:

F ij = ∂iAj − ∂jAi has 6 components,
3 correspond to electric field, 3 correspond to magnetic field.

▶ Geometry: The field A corresponds to connections on
bundles in geometry; a connection is used to specify “a way to
differentiate bundle sections”.

x

y
Qxy ∈ G

z

w

p Covariant derivative of Φ:
(dQΦ)x

def= Qxy Φy − Φx

In continuum, covariant derivative dAΦ def= dΦ + AΦ.

Curvature FA measures “non-flat-ness”,
and S(A) =

´
∥FA∥2dx is a natural functional.

• Yang–Mills–Higgs model S(A, Φ) def=
´

∥FA∥2 + |dAΦ|2dx
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Important observables in Yang–Mills theory

Lattice:
For a lattice loop γ = x1x2 · · · xn−1xnx1,

Tr(Qx1x2Qx2x3 · · · Qxn−1xnQxnx1)

is called a Wilson loop. It is a gauge invariant observable.
Continuum:
Given γ : [0, 1] → Rd , γ(0) = γ(1), Wilson loop is defined by

Tr(h(1))

which is gauge invariant, where h is “holonomy” along γ:

dh(s) = h(s)⟨A(γ(s)), dγ(s)⟩ h(0) = id ∈ G
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Special (and very interesting) case: d = 2

While e−S(A)DA is generally hard to make sense in continuum, in
d = 2 it is a well-defined theory and integrable theory.

What’s special at d = 2 is:
By a gauge transformation (A1, A2) → (0, Ã2), and F 12

Ã = ∂1Ã2.
Then S(A) is quadratic in A and e−S(A)DA becomes Gaussian.
(We’re allowed to compute correlation of gauge invariant observables in a ‘nice’ gauge)

It is integrable (correlations have exact formulas), for example:

E[Wilson loop of a simple loop γ] = exp(Area(γ)/2)

[Driver, Gross, King, Lévy, Sengupta... ’90s] [Park–Pfeffer–Sheffield–Yu’23]

Also, Wilson loop correlations satisfy interesting recursions.
[Levy’11], [Dahlqvist’15], [Driver–Hall–Kemp’17]
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To recap,
▶ In 2D continuum (R2 or surfaces), YM measure is

well-defined. There have been many studies on correlation
formulas, large N behavior (G = U(N)), etc.

▶ On finite lattice, any dimension, Yang–Mills measure is
well-defined. There are also studies on topics such as:
▶ “loop equations” (i.e. recursions of Wilson loop correlations),
▶ large N behavior,
▶ decay of two-point correlations, decay of large Wilson loops,
▶ duality with (discrete) random surface models, etc.

(e.g. [Osterwalder–Seiler’78] [Borgs–Seiler’83] [Chatterjee’17]
[Cao–Park–Sheffield’23]....)

▶ In continuum, 3D and 4D, YM measure is not yet rigorously
defined.
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Difficulties to make sense and study “ e−S(A)DA ”

1. Small scale singularity (ultraviolet problem, for all QFTs):
Even the Gaussian free field e−

´
|∇Φ|2dxDΦ is supported on

Cα for α < −(d − 2)/2.
So when d ≥ 2, the fields are not functions (they are
“generalized functions” a.k.a. “distributions”), and so the
products e.g. [Ai , Aj ] do not have classical meaning.
(This is related with UV divergence and renormalization.)
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2. Meaning of gauge invariant observables
Given γ : [0, 1] → Rd , γ(0) = γ(1),
Wilson loop observables Wγ(A) def= Tr(h(1)) ∈ G are gauge
invariant, where h is “holonomy” along γ:

dh(s) = h(s)⟨A(γ(s)), dγ(s)⟩ h(0) = id ∈ G

But generic distribution in Cα for α < 0 can not be integrated
along curves.
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3. Gauge invariance, or Gauge fixing:
The formal measure e−S(A)DA should be defined on {A}/ ∼,
where ∼ is gauge equivalence. Recall that in smooth setting
gauge equivalence is defined by A ∼ gAg−1 − (dg)g−1.

What do these mean in the singular setting?

“Gauge fixing”: finding a “cross-section”, i.e. selecting a
representative from each gauge equivalence class.
In abelian case, one could fix e.g. div A = 0.
In non-abelian case: “Gribov ambiguity” [Singer’78]
(other issues like “ghost” anti-commuting variables)
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4. Large field behavior:
There are simpler non-Gaussian QFT

e−
´

(|∇Φ|2+Φ4)dxDΦ , e−
´

(|∇Φ|2+eγΦ)dxDΦ

where “stability” mechanism is clearer, i.e. probability
becomes small when Φ is large. This is very unclear for YM.

Page 12/23



5. Osterwalder–Schrader axioms (’70s):
If correlation functions satisfy some axiomatic properties, then
one can reconstruct the quantum mechanics (Hilbert space
and operators) on Minkowski space.

6. Long distance (“infrared”) questions
For instance:
“Mass gap”: correlations decay exponentially?
“Quark confinement”: Wilson loop expectation decays like
area versus perimeter law?
Such long distance problems are often studied with lattice YM
models, to isolate difficulties from small scales. (I will
comment in the end.)
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1. Small scale singularity (ultraviolet problem)
2. Mathematical meaning of gauge invariant observables
3. Mathematical meaning of gauge invariance / equivalence
4. Control of large field behavior
5. Verify properties such as Osterwalder–Schrader axioms
6. Long distance problems (e.g. exponential decay)

[Chandra–Chevyrev–Hairer–S. ’20, ’22], [Chevyrev–S. ’23]
On 2D, 3D tori, we focus on addressing questions 1,2,3.
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[Chandra–Chevyrev–Hairer–S. ’20, ’22], [Chevyrev–S. ’23]
On 2D, 3D tori, we focus on questions 1,2,3. In particular:
▶ Deterministic construction:

We constructed new spaces of singular 1-forms (can be
embedded into standard Sobolev/Besov spaces), on which one
has notions of gauge equivalence and gauge invariant
observables.

▶ Stochastic construction:
In the “stochastic quantization” setting, small scale
singularities can be well-understood, and we obtain a Markov
process on “quotient space” {A}/ ∼ .
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Stochastic quantization

▶ In finite dimensions, it’s well-known in probability theory that

dXt = −∇V (Xt)dt + dBt X0 ∈ Rn

where B is Brownian motion in Rn,
the Prob Distribution of Xt goes to e−V (x)dx as t → ∞.

▶ Infinite dimensional analogue: the t → ∞ distribution of

∂tA = −∇S(A) + ξ

“would give a meaning” to e−S(A)DA.
Here ξ is Gaussian white noise, with E[ξ(t, x)] = 0 and

E[ξi(t, x)ξi(t ′, x ′)] = δ(t − t ′)δ(x − x ′).

Remark: ξ is very singular! (ξ ∈ C−(d+2)/2− almost surely)
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Stochastic quantization

The simplest (yet nontrivial) model is Φ4 model:

e−
´

(|∇Φ|2+Φ4)dxDΦ

Its stochastic quantization is the following SPDE:

∂tΦ = ∆Φ − Φ3 + ξ

Stochastic quantization of Φ4 in d = 3 has been successfully done:

[Hairer’13]: Local solution. (∂tΦε = ∆Φε − Φ3
ε + CεΦ + ξε, ε → 0)

Solved “small scale problem”
[Mourrat–Weber’17]: Obtained time-independent bound as t → ∞.
Krylov–Bogoliubov argument to construct the invariant measure.
[Gubinelli–Hofmanova’17]: Consider stationary solution on lattice. The
fixed-time law is tight as lattice spacing vanishes.
Solved “large field problem”
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Stochastic quantization of Yang–Mills

The dynamic ∂tA = −∇S(A) + ξ has the following form

∂tAi = ∆Ai +
[
Aj , 2∂jAi − ∂iAj + [Aj , Ai ]

]
+ ξi (i = 1, ..., d)

Remark. [Parisi–Wu ’81 “Perturbation theory without gauge fixing”]:

▶ The linear part of the dynamic is degenerate and not ∆Ai , but one
can add a drift tangent to the gauge transformation to get ∆Ai .

▶ This is “local gauge tuning” instead of “global gauge fixing”.
▶ This is called DeTurck trick in (deterministic) geometric flows.

The stochastic PDE is also formal due to small scale singularity.
We obtained local solution using Hairer’s theory in d = 2, 3.
(For large t, large field problem would show up.)
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Hairer’s theory of regularity structures (2013):
Given a subcritical (or “super-renormalizable”) equation,

{a finite collection of “perturbative objects”} → solution

is a continuous map.

Renormalized stochastic Yang–Mills equation:

∂tAi = ∆Ai +
[
Aj , 2∂jAi − ∂iAj + [Aj , Ai ]

]
−CAi + ξi

If d = 2: A3
0, P(A0∂A0)(∂A0), ∂P(A0∂A0)A0 (where P = (∂t − ∆)−1)

If d = 3: hundreds of “perturbative objects”.
If d = 4: infinitely many.

Page 19/23



Gauge equivalence
d = 3: we constructed a (nonlinear) space S ⊂ C− 1

2 −, such that
▶ ∀A ∈ S, we consider a gauge invariant regularization Aδ

(δ > 0) obtained by solving deterministic Yang-Mills heat flow
with initial condition A up to “time” δ > 0.
(Similar result [Cao–Chatterjee’21]; idea from [Charalambous–Gross’13])

▶ the Wilson loop Tr holℓ(Aδ) is a gauge invariant observable.
▶ Define gauge equivalence A ∼ Ā on S if Aδ ∼ Āδ for δ > 0.

Project solution to the quotient space S/ ∼

∂tAi = ∆Ai +
[
Aj , 2∂jAi − ∂iAj + [Aj , Ai ]

]
−CAi + ξi

A0

A′

0
= g0 ◦ A0

A(t)
A′(t) There is a finite shift of C such that

the limit is gauge covariant, which
allows us to project the solution to
S/ ∼
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In 2D continuum, or on lattice, we can prove many
properties of YM measure using the dynamic.

In 2D continuum:

[Chevyrev–S.’23] 2D YM measure is indeed the unique invariant
measure for the YM stochastic dynamic. (“Bourgain argument”.)

This characterization has many applications: e.g. 2D YM measure
is the universal limit of different lattice approximations.
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On lattice of dimension d :

x

y
Qxy ∈ G

z

w

p e−βS(Q)dQHaar

where S(Q) =
∑

p Tr(Qp)
and Qp

def= Qxy QyzQzw Qwx .

[S.,Smith,Zhu,Zhu’22-’24]
Lattice dynamic (G = U(N) case): at each edge e,

dQe = β
∑
p⊃e

(Qp − Q∗
p)dt + dBe

where (Be) are i.i.d. Brownian motions on U(N).
▶ Re-derive master loop equation by Ito formula.
▶ One can prove exponential decay of correlation (“mass gap”)

for small β using the dynamic and log-Sobolev.
(Monday talks: dynamic on manifolds, mixing, coupling, curvature....)

▶ Large N limit. etc...
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Open questions:
▶ “Large field problem”: In 3D, how to obtain strong enough

bound on A(t) as t becomes large?
▶ “Long distance problem”:

Construct the dynamic on R3 instead of T3.
Prove mass gap in continuum in 3D. (Or large β on lattice.)

▶ Anything can be said in 4D?

Page 23/23


